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a b s t r a c t

Packed bed reactors (PBRs) are multiphase reactors in which gas and liquid phases flow over a solid pack-
ing. PBRs find widespread use in petroleum refining, chemical and process industries, pollution abatement
and biochemical industries. In this paper numerical study of flow behavior through random packing of
non-overlapping spheres in a cylindrical geometry has been carried out using a commercially available
computational fluid dynamics package (FLUENT). Dimensionless pressure drop was studied for a fluid
through randomly packed bed at different Reynolds numbers based on pore permeability and interstitial
fluid velocity. Numerical solution of Navier–Stokes equations in a three-dimensional randomly porous
packed bed illustrated that the results are in good agreement with those of reported by Macdonald et al.
(1979) in the range of Reynolds number studied. By injection of solute into the system, the dispersivity
over a wide range of flow rate has also been investigated. The simulation results have been evaluated

by comparing with published experimental results in term of dispersion coefficient. It is shown that the
lateral fluid dispersion coefficients in randomly packed beds can be estimated by comparing the concen-
tration profiles of solute obtained by numerical simulations and those derived analytically by solving the
macroscopic dispersion equation for the present geometry.
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. Introduction

Packed bed reactors (PBRs) are extensively used in the chemical,
nvironmental and technological processes. In chemical industries,
acked beds can be found in diverse applications, being used as
eaction, filtration, separation and purification units. Flow hydro-
ynamics can play a crucial role in determining the performance of
uch devices. The flow behavior in such systems is very complex due
o interactions between fluid and packed particles, particles and
olumn wall, and fluid and column wall. The relative importance
f these interactions depends on the operating conditions, ratios of
acked particle size to the column diameter, and configuration of
he flow system. This will in turn result in different microscopic and

acroscopic flow behavior within the packed bed. Despite interest-
ng developments in applications of structured packings in recent
ears [1], the randomly packed bed is still the state-of-the-art reac-

or type in these fields.

Computer speed has increased tremendously over the last
ew years. It becomes interesting, tempting and within accept-
ble time and cost constraints to simulate packed beds with
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hree-dimensional computational fluid dynamics (CFD), in order to
rovide insight in flow patterns. CFD is a fast growing technology
hat can be useful to obtain shorter product–process development
ycles, to optimize energy requirements, to optimize existing pro-
esses and to efficiently design new products and processes. CFD
as allowed promising applications of numerical simulations to the
odeling of multiphase flow in packed bed reactors [2–6].
Modeling and simulation are essential tools in design of packed

ed reactors, and as the performance requirements of these equip-
ents are growing, it is required that the proposed model be able

o define not only spatial distribution of involved fluids but also
elocity profiles within the reactor.

CFD applications to simulate fluid flow in a porous matrix are
ased on the numerical solution of Navier–Stokes equations, with
broad variety of applications ranging from oil basin simulation

7] to modeling of corn seed drying [8]. In all cases, the solution
epends on an appropriate geometrical model, mesh definition and
he selection of a turbulence model.

There are several models can be used to investigate turbulence

ow in porous packed beds. One of the important models is large
ddy simulation (LES). LES can be used to calculate flow statis-
ics, which are determined by the larger scales, such as the mean
elocity and second-order velocity moments. Indeed, these quan-
ities are often required in practice. Recent advances in physical

http://www.sciencedirect.com/science/journal/13858947
mailto:ajafari@lut.fi
dx.doi.org/10.1016/j.cej.2008.07.033
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odels, numerical techniques, and computational power together
ave made LES [9] as a useful tool for investigating turbulence flow
egimes in porous beds [10] where the dynamics of larger scales
s influenced by the presence of small scales because of nonlinear
nteractions.

Also the analysis of the dispersivity of fluid flowing through
porous packed bed is important in such systems. Apparently,

here are three principal mechanisms that cause dispersion in a
ranular bed, namely diffusive dispersion which arises from molec-
lar diffusion across the streamlines; mechanical dispersion which
rises from stochastic velocity fluctuations of fluid induced by the
andomly positions bed particles; and non-mechanical dispersion
hich arises due to the presence of dead-end pores [11]. Due to the

imultaneous presence of these three mechanisms, the dispersiv-
ty tensor is complex in nature. The lateral dispersion coefficients,

hich contribute to the spread of the solute in directions orthog-
nal to the mean flow, are difficult components of the dispersivity
ensor to measure using the solute concentration measuring tech-
ique in the bed [12]. Pulsed gradient spin echo NMR method [13],
novel approach, was used to obtain more accurate values for

hese coefficients. As an adjunct to experiments, simulations may
e used to predict detailed information, such as concentration pro-
les in the direction normal to the mean flow, from which these
oefficients may be extracted.

The objective of this work is the modeling and CFD simulation
f fluid flow through a bed of non-overlapping spherical parti-
les in a cylindrical geometry as a randomly packed bed. For the
ore space with a specified void fraction and a set of fluid physical
roperties, the Navie–Stokes equations are solved for the velocity
nd pressure fields in the fluid phase of the pore space by dis-
retization using the control volume method. To investigate the
ow hydrodynamics in different regimes, laminar model as well
s turbulence models, LES and Reynolds stress model (RSM), were
sed. The obtained results compared with works described in Refs.
14–17]. The fluid dispersivity was also studied, and the spread of

solute continuously injected to the system was recorded. The
ethod for predicting the lateral dispersion coefficients is simi-

ar to the so-called concentration-based methods [18] that utilize
olutions of the advection–diffusion equation [18] to calculate the
ispersivity from the measured concentration and mean velocity
ata.

. Mathematical modeling

.1. Laminar flow

Since the forces that drive the flow change very slow in time, the
teady state flows are often encountered in flow in granular media.
he flow is assumed to be horizontal, steady state, incompressible
nd isothermal. The mathematical description for the flow of a vis-
ous fluid through a three-dimensional granular bed is based on
he steady form of the Navier–Stokes and continuity equations [19]
or momentum and mass conservation, respectively. By taking the
iscosity to be constant, the microscopic equations of motion may
e written in the following form:

u.∇u = −∇p + �∇ · ∇u (1)

· u = 0 (2)

here �, u, p and � represent density, velocity, pressure, and

ynamic viscosity of fluid, respectively. A uniform velocity pro-
le is assumed at the inlet whereas the pressure at the exit is
ssumed to be fixed to the local atmospheric pressure. In addi-
ion, no-slip boundary condition at the entire solid fluid interface is
onsidered.

z
e
(

Fig. 1. Particles configuration for the simulations.

.2. Turbulent flow

In the present work both laminar and turbulence models, LES
nd RSM, at higher Reynolds numbers were considered. It should be
entioned because performing direct numerical simulation (DNS)

n which all scales of the flow are properly resolved for simulating
ows in models such as that illustrated in Fig. 1 is not currently

easible due to prohibitive computational requirements, LES and
SM were studied.

Firstly, the application of LES [20], which has the less ambitious
oal of describing the larger scales of the flow field through a sta-
ionary irregular array of particles, to study of flow regimes was
nvestigated. Using LES the dynamic range of scales to be resolved
as reduced by filtering operation performed on the Navier–Stokes

quations, so LES generates an approximation in which scales below
he filter size are missing. The turbulent energy cascade gener-
tes smaller scales and all scales of turbulence are dynamically
ignificant. Given the lack of small scales below a certain size,
he correction must be applied via the aforementioned additional
erms (known as subgrid stress tensor) in the governing equations
f LES. The subgrid scale (sgs) stress tensor describes the effect of
he unresolved scales on the larger resolved scales. The replacement
f sgs stress by an explicit physical model is required to close equa-
ions for the large-scale fields on a grid small enough (but much
arger than the Kolmogorov scale) to provide reasonable resolu-
ions. Details of the LES microscopic equations can be found in Ref.
21].

In the following, RSM was applied to investigate of flow behavior
n the bed. At high Reynolds numbers, the governing equations for
he conservation of mass and momentum are averaged over both
ime and space [22], and u′

i
· u′

j
has been calculated using differential

ransport equations. As RSM is a well-known model we avoid to
escribe the details, however for more information see Ref. [21].

.3. Dispersion modeling
As stated earlier, at the inlet a constant superficial velocity in
direction in the cylinder, for the solvent is assumed. The geom-
try is symmetric and a continuous source of solute is located at
0 0 0). The size of the injection port is very small compared to the
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iameter of the cylinder to ensure the validity of the point source
pproximation.

The volume-average form of the transport equation,
onvection–diffusion equation, was used to calculate the average
oncentration of fluid phase in granular bed under flow conditions
ecause it is not possible to obtain an exact mathematical descrip-
ion of the motion of each fluid element. The volume average
oncentration of a solute, 〈c〉, takes on the form of Fick’s law with a
onstant effective diffusivity coefficient [23]. The dispersive term
ccounts for the spread of the solute about the mean pulse posi-
ion due to molecular diffusion and the coupling of interparticle
elocity and concentration gradients,

∂ 〈c〉
∂t

+ u.∇ 〈c〉 = ∇.(D.∇ 〈c〉) + S(r, z, t) (3)

here D and S refer to the effective diffusivity coefficient, and
ource term, respectively. The solution of Eq. (3) for cylindrical
oordinate system subjected to the initial and boundary conditions
iven below:〈
c(r, z, 0)

〉
= 0

∂ 〈c〉
∂�

= 0 (cylinder has symmetry)

∂ 〈c〉
∂r

= 0 when r = ± d

2
∂ 〈c〉

∣∣
r=0

= finite

(4)

an be expressed in terms of Green’s function F(r, z, r′, z′, t − �),
hich represents the mean concentration at (r, z) at time t resulting

rom a unit source at (r′, z′) at time �, as follows [24]:

c(r, z, t)
〉

=
∫ d

2

− d
2

∫ ∞

−∞

∫ t

0

[F(r, z, r′, z′, t − �)·ı(r′, z′, t)·d�·dr′·dz′]

(5)

here d is cylinder diameter. The Green’s function satisfies

∂F

∂t
+ uz,0

�
· ∂F

∂z
= Drr · 1

r
· ∂

∂r
·
(

r · ∂F

∂r

)
+ Dzz · ∂2F

∂z2
(6)

ere uz,0 and � are superficial fluid velocity and porosity, respec-
ively. Also F(r, z, r′, z′, 0) = ı(r − r′)·ı(z − z′) and the boundary
onditions for Eq. (6) are given by

∂F

∂r
= 0 when r = ± d

2
∂F

∂r

∣∣∣∣
r=0

= finite
(7)

In order to obtain Eq. (6) it is assumed that the coefficients of
iffusivity are constant and the overall mean fluid velocities in
he y and z-directions are small. By applying the transformation
= z − z′−(t − �)·Vz,0/� to Eq. (6), it can be reduced to:

∂F

∂t
= Drr · 1

r
· ∂

∂r
·
(

r · ∂F

∂r

)
+ Dzz · ∂2F

∂�2
(8)

sing separation of variables, the following expression for the
reen’s function can be obtained [24]:

= 1

	 · d2 ·
√

4 · 	 · Dzz · (t − �)

−
(

� − �′)2

e4·Dzz ·(t−z)

[ ]

× 1 +

∑
˛

e−Drr ·˛2·(t−�) · J0(˛ · r) · J0(˛ · r′)
J2
0

(
˛. d

2

) (9)

here J is Bessel function, and ˛ shows its roots. To obtain the
ateral dispersion in a granular bed, the Green’s function may be

p
t
w

a
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btained by neglecting diffusion in the z-direction as compared
ith convection and by taking into account that

lim
zz→0

−
(

� − �′)2

e4·Dzz ·(t−�)√
4 · 	 · Dzz · (t − �)

= ı
[
z − z′ − (t − �) · uz,0/�

]
(10)

hat is

= ı[z − z′ − (t − �) · uz,0/�]
	 · d2

×
[

1 +
∑

˛

e−Drr .˛2.(t−�) · J0(˛ · r) · J0(˛ · r′)
J2
0 (˛.d/2)

]
(11)

ubstituting the expression for F from Eq. (11) into Eq. (5) the con-
entration resulting from a continuous point source of solute with
trength q located at (0 0 0) may be given as

c(z, r, t)
〉

=
∫ d

2

− d
2

∫ ∞

−∞

∫ t

0

[
ı[z − z′ − (t − �) · uz,0/�]

	 · d2

]

×
[

1 +
∑

˛

e−Drr .˛2.(t−�) · J0(˛ · r) · J0(˛ · r′)
J2
0 (˛.d/2)

]

× q · ı[z′ + 1
2

Lz] · ı(r′).d� · dr′ · dz′ (12)

valuating the integral in Eq. (12), the expression for the solute
oncentration becomes:

(r, z) = 4 · q · �

uz,0 · 	 · d2
×

[
1 +

∑
˛

e
−Drr ·˛2 ·�·(1/2Lz+z)

uz,0 · J0(˛ · r)

J2
0 (˛.d/2)

]
(13)

here Lz is the length of packed bed. Following Cussler [18], diffu-
ion coefficients Drr in cylindrical geometry may be replaced by the
ispersion coefficients Ez(r) = u2

z,0d2/4	2�Drr , Eq. (13) becomes:

(r, z) = 4 · q · �

uz,0 · 	 · d2
×

[
1 +

∑
˛

e
−˛2 ·uz,0 ·d2 .(1/2Lz+z)

4	2Ez (r) · J0(˛ · r)

J2
0 (˛.d/2)

]
(14)

ote that the dispersion coefficients depend inversely on the dif-
usion coefficients.

. Implementation of numerical method

Fig. 1 illustrates non-overlapping uniform size spheres ran-
omly distributed within a cylinder. During this research, using
atlab software and a C++ code applied to the commercial grid-

eneration tool, GAMBIT 2.2 (Fluent Inc.), a defined number of
andomly positioned non-overlapping spheres in a specified three-
imensional domain was developed. A code obtained by Matlab
ses random number generator which carefully positions specific
umber of non-overlapping spheres in a particular domain. The
++ code generates a journal file for preprocessor, which creates
hree-dimensional geometry. The input parameters defined by user
re the number of spheres, radius of spheres and dimensions of
he geometry. Nevertheless more details about this method can be
ound in Ref. [25].

In this work smooth and roughened wall cylinders were studied.
s shown in Fig. 2(a) the walls are smooth and, therefore, regions
f higher velocity are expected to exist near the walls due to the

resence of large pores in the wall region. As illustrated in Fig. 2(b)
he walls are roughened by adding spherical caps to create a system
ith a reasonably large spread of pore sizes in the wall region.

The spherical particles as well as the cylinders are imperme-
ble to the continuous phase. Different number and diameter



A. Jafari et al. / Chemical Engineering

F
T

o
c
e
t

v
c
b
n
f
i
t
5
a
c
t
u
r
c
e
s
s

a
f

4

T
l
t
t
t
c
r
c
c
p
a

(
m
s
K
fl
D
o
e
l

i
i
e
m

K

w
i
p
c
down in high porosity regimes. Martys et al. [29] also have shown
ig. 2. Two different used geometries with (a) smooth walls and (b) rough walls.
he length and diameter of cylinders are 21 and 6 cm, respectively.

f particles are tested to obtain different porosity. Also longer
ylinders were investigated to show that porosity has more
ffect on dimensionless pressure drop compare to length of the
ubes.

Eqs. (1) and (2) are solved numerically for the pressure and
elocity fields using the finite volume method with the pressure
orrection algorithm SIMPLE [26]. In dealing with the fixed pressure
oundary at the exit the pressure corrections are set to zero at the
odes just inside the exit boundary. The Power-Law scheme is used

or the discretization of convective terms. To divide the pore space
nto discrete control volumes more than 2 × 106, three-dimensional
etrahedral computational cells were used. In addition, roughly
× 105 wall triangular elements and more than 104 at the inlet
nd exit were used. It is very important to use adequate number of
omputational cells while numerically solving the governing equa-
ions over the solution domain. The grid is shown in Fig. 3. Using
nder-relaxation factors 0.5 and 0.7 for the pressure and velocities,
espectively a reasonable rate of convergence was achieved. The

onvergence was considered to be achieved when the conservation
quations of mass and momentum were satisfied, which was con-
idered to have occurred when the normalized residuals became
maller than 5 × 10−5. The normalization factors used for the mass

t
s

K

Fig. 3. (a) The mesh view on a plane located at z = 0.1 m. (b) To obtai
Journal 144 (2008) 476–482 479

nd momentum were the maximum residual values after the first
ew iterations.

. Results and discussion

Numerical results for the roughened cylinder are shown in Fig. 4.
he dimensionless pressure drop predicted by the soft cylinder is
ower than that of roughened geometry. A comparison between
he first model and the correlations proposed by [14–17] implies
hat there should be large pores in the wall region through which
he main portion of fluid flowing from inlet to exit [27]. However,
omparison between studies of Soleymani et al. [27] and the results
eported here represents that the cubic geometry has problem of
hanneling and fluid flows more to the corners. So it seems that
hoosing a cylindrical geometry for investigation of flow through a
orous media is more accurate. Also most of industrial geometries
re cylinder.

Fig. 4 illustrates the plots of dimensionless pressure drop
−dp/dz)K/�Vf�, versus the Reynolds number based on pore per-

eability and interstitial fluid velocity, ReK = �Vf

√
K/�/�, as

uggested by Kececioglu and Jiang [15]. In these definitions, −dp/dz,
and Vf represent pressure drop, permeability, and interstitial

uid velocity magnitude, respectively. As illustrated in Fig. 4(a), a
arcy regime can be observed for numerical results over a range
f Reynolds number for which the dimensionless pressure drop is
qual to a constant. Using this part of the simulations and Darcy’s
aw, the porous bed permeability was determined as shown in Fig. 5.

A large number of efforts have been expended on determin-
ng K. The most widely used expression to calculate permeability
s Kozeny–Carman’s correlation. The following semi-empirical
xpression has been found to accurately represent many experi-
ental data.

= d2
p�3

36k(1 − �)2
(15)

here k is experimentally determined and is a measure of tortuos-
ty of the fluid path thorough the pores, and for smooth spherical
articles is equal to 5 [28]. In this equation dp represents the parti-
le diameter. According to Fig. 5 the Kozeny–Carman relation breaks
hat Eq. (15) in the high porosity regimes is not suitable, and they
uggested their relation:

= 2[1 − (� − �c)](� − �c) f /s2 (16)

n better visualization the highlighted part in (a) is magnified.
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Fig. 4. Plot of dimensionless pressure drop vs. ReK for the roughened cylinder. (a) Darcy fl
and two post-Darcy regimes.

Fig. 5. Comparison of simulation results of permeability calculation at different
porosity with Eqs. (15) and (16).
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Table 1
Correlations for dimensionless pressure drop vs. Reynolds number based on pore permea

Forchheimer flow

Ergun [17]

Macdonald et al. [16]

Fand et al. [14]
P ′K
�v

= 0.93 + 0.14R̂eK ; 0.57(±0.06

Kececioglu and Jiang [15]
P ′K
�v

= 1(±0.15) + 0.7(±0.15)R̂eK
ow based on numerical results, (b) Darcy and Forchheimer regimes and (c) Darcy

here �c = 0.055 and f ≈ 4.2. Since 1/s represents a length scale
ssociated with a typical pore size, the power low term in the above
xpression accounts for the tortuosity. As can be seen in Fig. 5 the
ormula proposed by Martys et al. [29] cannot predict the perme-
bility well.

Fig. 4(b) illustrates the post-Darcy regime. The change in the
lope as shown in Fig. 4(c) indicates the transition to the turbu-
ent regime. The transition criteria from laminar to turbulent flow
or flow through porous media have not been yet defined. Authors
roved numerically that the flow regime demarcation varies with
ermeability [21]. In addition, Kececioglu and Jiang [15] from their
xperimental work showed that particle diameter has effect on flow
egime. A comparison between the numerical results and the val-
es obtained from the correlations proposed by other researchers,
hich are listed in Table 1 implies that the numerical results are
n good agreement with those of Macdonald et al. [16]. There is a
lightly difference in slopes when transition to the second post-
arcy regime occurs, but the maximum error is less than 10%. The
ifferences between the calculated dimensionless pressure drop
nd those in [15] could be attributed to the inaccuracy of the

bility and interstitial fluid velocity for flow through porous bed [15]

Turbulent flow

P ′K
�v

= 0.83 + 0.19R̂eK ; 0.08 < R̂eK < 196

P ′K
�v

= 1 + 0.19R̂eK ; 0.003 < R̂eK < 32.7

) < R̂eK < 9(±0.6)
P ′K
�v

= 1.14 + 0.12R̂eK ; R̂eK > 13.5

P ′K
� v

= 1.9(±0.1) + 0.22(±0.04)R̂eK
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Table 2
Effect of LES and RSM models on dimensionless pressure drop at constant Reynolds number and porosity

Numerical results Macdonald et al. [16] Fand et a

1.929 (LES) 1.916 1.605
2.272 (RSM) 1.916 1.605

Table 3
Effect of mesh on dimensionless pressure drop

Grid #1 #2 #3

N
N
N

e
t
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m
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in Fig. 9, when the solute moves through the bed the peak of mass
umber of tetrahedral elements 5 × 105 2 × 106 6 × 106

umber of nodes ≈2 × 105 4 × 105 9 × 105

umerical results (dimensionless pressure drop) 1.56 1.929 1.920

xperimental procedures, or to some other reason such as misin-
erpretation of the results using simplified theories.

The values of dimensionless pressure drop at the transition
egime from laminar to turbulence are shown in Table 2. Compar-
son of numerical results obtained by LES and RSM shows that LES

odel with using Smagorinsky for sgs model have a better agree-
ent with results of other researchers specially Macdonald et al.

16]. Turbulence in the mentioned system is a controversial issue,
ndeed three-dimensional fluctuations occur on length scales that
ange from very small pores with the size of fraction of particle
iameter to the scales much larger than particle diameter and on a
orrespondingly broad range of time scales. Hence, it is necessary
o describe fluid flow in a wide range of length and time scales.

odeling of this system requires a mathematically rigorous mod-
ling methodology capable of predicting coupling behaviors from
he very small scales through full-scale system.

A grid independency check has been conducted to ensure that
he results from the runs are not grid dependent. To do this test,
hree different grids have been chosen. Their details and obtained
umerical results with using LES model and every grid are shown

n Table 3. The results appear to be grid independent. There was no
ignificant variation in the dimensionless pressure drop resulted
y the grid with 2 × 106 elements and those obtained from the
ne grid, so the grid with 2 × 106 elements was selected for all
alculations.

Fig. 6 illustrates the color image of velocity field within the
orous matrix. The velocity magnitude was evaluated in the plane

z − y) passing through the center of the bed and the plane (x − y)
t z = 5 cm. Contours of velocity magnitude indicate that average
elocity in the near side wall region but not on the wall is higher
han in the center region of porous medium. Fluid layers close to the
alls tend to move faster resulting in a flattened velocity profile.

ig. 6. Contour plot of velocity field in the porous bed. The figure is color coded
y velocity magnitude, where the red is for the highest and blue represents the
owest. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of the article.)

f
w
I

F
�
d
s

l. [14] Ergun [17] Kececioglu and Jiang [15]

1.746 2.961
1.746 2.961

In a porous bed relaminarization could occur after diverging
ections as well as turbulence enhancement after converging sec-
ions. In this light, LES is a potentially powerful tool for providing
etailed and accurate solution of flow in a porous packed bed
t high Reynolds numbers. In addition our calculations with the
avier–Stokes equations indicate that the laminar model should
e valid for low Reynolds numbers and also for a limited range of
igh Reynolds numbers.

To test the roughened cylinder further the lateral fluid disper-
ivities were calculated for the first post-Darcy regime at an axial
osition within the bed. As mentioned earlier, it is of interest to
btain the evolution of the mass fraction profile of a solute injected
nto the bed of particles filled with solvent flowing due to disper-
ion in the axial direction. The molecular diffusivity of the solute in
he solvent is assumed to be a constant. In Eq. (14) all of parame-
ers except dispersion coefficient are known. To link between CFD
nd dispersion modeling it was assumed that concentration pro-
les calculated by Eq. (14) and that obtained from simulation at
ach Peclet number which is defined as

e = u × Lz

Drr
(17)

hould be equal to each other. To satisfy this assumption a desired
ispersion coefficient is needed. Mathematica software (version
.2) was applied to implement trial and error method to obtain
his dispersion coefficient. Fig. 7, as an example, shows the solute

ass fraction profile at Pe = 7.5. To validate this method, several dis-
ersion coefficients were determined at different Peclet numbers
s shown in Fig. 8. According to this figure the estimated disper-
ion coefficients (simulation results) are in agreement with the
esults reported in [13], therefore the theoretical equation derived
y authors, Eq. (14), is able to predict concentration profile in porous
eds.

The fluid dispersivity in the bed is essentially isotropic. As shown
raction profile (which is close to a Gaussian) decays in the stream-
ise direction indicating the mixing of the solute and the solvent.

n order to provide a deeper investigation of the subject, the solute

ig. 7. The mass fraction profile of solute at z = 0.05 m which uz,0 = 0.012 m/s,
= 0.602, q = 0.019 × 10−7 kg/s, Pe = 7.5 and the solute source is located at z = r = 0. The
ashed line represents the simulation results and the solid line shows the calculated
olute mass fraction using Eq. (14).



482 A. Jafari et al. / Chemical Engineering

Fig. 8. Log of longitudinal dispersion coefficient normalized by effective diffusivity
coefficient as a function of Log of Peclet number.
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ig. 9. The solute mass fraction profiles at different distance from the solute source.

ransport could be estimated by calculating the individual trajec-
ories of a large number of non-interacting tracer particles. This
etailed study will be the subject of the future paper.

. Conclusion

Numerical study of flow through randomly packing of non-
verlapping spheres in cylindrical geometries (smooth and rough
all) is investigated. Assuming rough walls, the simulation results

or pressure drop across the bed agreed well with the correlation of
acdonald et al. [16] for the range of actual flow Reynolds studied

ere. Further analysis is needed of the details of the mechanism of
urbulent generation, which will be examined in a future study.
esults of smooth geometry confirm that there should be large
ores in the wall region through which the main portion of fluid
owing from inlet to exit. Simulations were done using a model
ased on the Navier–Stokes equations, including inertial terms but

ithout a turbulence model, for range of conditions studied in the

econd post-Darcy (“turbulent”) flow regime to examine the fluid
ow in a granular bed. For the first post-Darcy (Forchheimer) flow
egime, the calculated results for the dispersion coefficients in the
oughened geometry were found to be in agreement with those

[

[

Journal 144 (2008) 476–482

f Seymour and Callaghan [13] and also results of cubic geometry
eported by Soleymani et al. [27].
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